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least two images in the first and second defocus bands 
in order to detect the points at which they are not 
complementary. The addition of these two images 
will give the direction in which the atomic columns 
should be moved in order to improve the accuracy 
of the input structure. Obviously, these conclusions 
are still valid for more general structures and planar 
interfaces. The important parameters are the distances 
between projected atomic columns. In all cases for 
which these distances are smaller than the Scherzer 
resolution limit the effect of the transfer function will 
result in a large distortion of the image. The determi- 
nation of the selected defoci for imaging tunnels or 
atoms has to be studied in a specific case prior to the 
interface structure determination. It should, however, 
be concluded that there is an urgent need for develop- 
ing a practical algorithm allowing deconvolution of 
the effect of the transfer function and restoration of 
an aberration-free image with a resolution limit close 
to the information limit. 
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Abstract 
The electron microscope image intensity of a thin 
crystal is described as a time average of the image of 
a crystal perturbed by time-dependent fluctuations 
corresponding to thermal motion of the atoms or 
low-energy electronic excitations. For very thin crys- 
tals the phase-object approximation indicates that 
images having atomic resolution may be obtained 
from the inelastically scattered electrons. It is shown 
that the use of suitable approximations allows esti- 
mates to be made of the contribution of the inelasti- 
cally scattered electrons to the high-resolution images 
of thicker crystals. The resolution of images formed 
by inelastically scattered electrons is not affected by 
the non-localization of the inelastic scattering 
process. 

0108-7673/' 88/060847-07503.00 

1. Introduction 
Recent" trends towards the more quantitative uses of 
electron microscopy have emphasized the need for a 
more complete assessment of the formation of images 
by the electrons inelastically scattered from the speci- 
men (Cowley & Smith, 1987). Existing treatments 
such as those of Misell & Atkins (1973) and Kohl & 
Rose (1985) appear adequate for most moderate- 
resolution imaging but some uncertainties exist 
regarding the possibility that inelastically scattered 
electrons may contribute to the atomic-scale detail of 
high-resolution images of crystals. 

For the scattering by phonons, or the thermal 
motions of atoms, it is usually considered adequate 
to apply a Debye-Waller factor to the atomic scatter- 
ing amplitudes so that the potential distribution in 
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real space is convoluted by a smearing function. Then 
for thick crystals an absorption function with non- 
zero Fourier coefficients is applied. The thermal 
diffuse scattering occurs at" high angles in the diffrac- 
tion pattern and for medium-resolution bright-field 
imaging it may be assumed that most, or all, of the 
scattering is excluded by the objective aperture. For 
high-resolution imaging, however, the objective aper- 
ture is large enough to include an appreciable propor- 
tion of the thermal diffuse scattering and the question 
arises as to how this scattering will contribute to the 
images. 

For the excitations of plasmons or single-electron 
excitations, involving energy losses in the range of 5 
to 30 eV, the inelastic scattering is assumed tb occur 
only in the small-angle range of 0-1 to 1 mrad. The 
corresponding absorption coefficients for the elastic 
scattering are dominated by the zero-order Fourier 
coefficient although for single-electron excitations 
some small amplitudes for non-zero Fourier 
coefficients have been calculated (Doyle, 1970). Imag- 
ing with the small-angle inelastic scattering is not 
expected to give any high-resolution detail in the 
weak-phase-object approximation (WPOA) because 
of the non-localized natur,*, of the excitations. 
However, elastic scattering of the inelastically scat- 
tered electrons or inelastic scattering of the elastically 
scattered electrons can in principle give resolution 
comparable to that for elastic scattering alone. In 
practice the chromatic aberration for conventional 
transmission electron microscopy (TEM) (but not for 
scanning transmission electron microscopy, STEM) 
is a complicating factor if the range of energies used 
to form the image is not restricted to 1 or 2 eV by an 
energy filter for 100-200keV electron beams. For 
higher voltages the chromatic aberration effect is cor- 
respondingly less, so that for 1 MeV, for example, 
with chromatic aberration constant Cc = 2 mm, the 
chromatic aberration effect will not appreciably 
degrade a resolution of 3/~ unless the energy range 
exceeds about 20 eV. Hence the contribution of the 
inelastic scattering to high-resolution images may be 
increasingly important as the resolution is improved 
and higher accelerating voltages are used. 

It is the purpose of this paper to present a formula- 
tion of the problem of incorporating the various forms 
of inelastic scattering into the computed high-reso- 
lution images of crystals in such a way that simple 
approximations may be made to allow estimates of 
the magnitudes of the effects to be expected. Firstly 
a phase-object approximation will be made to treat 
a very thin sample, or a single slice for use in a 
multi-slice treatment. This allows the WPOA effects 
to be seen and shows the nature of the complications 
which arise from dynamical diffraction effects. Then 
the means for including the diffuse scattering in multi- 
slice formulations will be reviewed and simplifying 
approximations will be suggested so that the magni- 

tude of effects to be expected for thicker crystals can 
be estimated. The formulation follows the principles 
of Van Hove (1954) as previously applied to a range 
of diffraction problems (Cowley, 1981). The inelastic 
scattering is taken into account by considering that 
the potential distribution of the sample is a function 
of time. The changes of energy involved are assumed 
to have a negligible effect on the interaction constant 
and the Fresnel diffraction processes within the 
sample but are taken into account in the imaging 
process by assuming the transfer function to be 
modified by the appropriate change of the objective 
lens defocus, Af. 

2. General  formulation 

The wave function at the exit face of a sample may 
be written as if(r, t), where r is a two-dimensional 
vector, coordinates x, y. The image intensity is then 

l(r)  = (l~(r, t) * t(r)l 2) (1) 

where the angular brackets () represent a time 
average; thus 

T 

I(r)=--<l(r,t)) = lim T- '  ~ l ( r , t )  dt. 
T ~ o o  0 

In (1), t(r) is the complex spread function given by 
Fourier transform of the transfer function T(u) where 
u is the two-dimensional reciprocal-space vector. 

The time dependence of O(r, t) can be represented 
as time-dependent deviations from an average func- 
tion ~bo(r)-= (~b(r, t)). 

Then 

and 

~(r, t )=  fro(r) + A~(r, t) 

<a~(r ,  t)) = O. 

Equation (1) becomes 

I(r) -- Ig, o(r) * to(r)l= + Y. <lag're(r, t) * t,.(r)J 2) 
m 

(2) 

(3) 

where to(r) is the spread function corresponding to 
zero energy loss and the index m refers to distinguish- 
able energy loss values for which the transfer func- 
tions Tin(u) and spread functions t,,(r) are appreci- 
ably different. In the multi-slice formulation for the 
many-beam dynamical diffraction of electrons 
(Cowley & Moodie, 1957), the exit wave function is 
expressed in terms of the transmission function 
q,(r, t) for each of N slices of crystal taken perpen- 
dicular to the incident-beam direction, and the propa- 
gation function p,(r) for propagation of the wave 
between the center of one slice and center of the next. 
With a convenient notation, 

~(r, t )=  ~k,(r). qoN(r, t) (4) 
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where q~(r ,  t) represents all the processes of multipli- 
cation by q,(r,  t) with n from 0 to N and convolution 
by the propagat ion functions p,(r) ,  and 4,i(r) is the 
incident wave function, which for convenience, is 
taken as unity. Then 

~b(r, t ) =  q~-~[q,,(r, t) * p,(r)]q~+~. (5) 

The inelastic scattering may be considered to arise 
from the t ime-dependent  variations of q,(r ,  t): 

q,(r,  t ) =  (q,(r ,  t ) )+  Aq,(r, t). (6) 

Then the exit wave function may be expressed as a 
series in powers of the small quantities Aq,(r,  t)" 

~,(r, t ) =  (q~-l(r,  t))[(q,(r ,  t ))* p , ( r ) ]  

.~+,(r, x ( q  t ) ) + E  (q~-l(r, t)) 
rl  

x [Aq,,(r, t) * p,,(r)](q,U+,(r, t)) 
+ 2 E  "+' (qo (r, t))[aq.(r, t) • p,,(r)] 

n' l  > ?1 

m - 1  x (q,+, (r, t))[Aq,,(r, t) * p,,(r)] 
N x (q,,+l(r, t ) )+  EEE . . . .  

p > r n > n  
(7) 

The first term of (7) is equal to (~b(r, t)) = qJo(r) if all 
other terms average to zero. The second term, the 
first-order inelastic scattering, averages to zero by 
definition. The averages of the further terms may 
contain non-zero components  if there is correlation 
between the perturbations in different slices, i.e. if 

(Aq,,(r, t) Aq,,(r, t ) ) #  0. 

For thermal diffuse scattering (TDS), it seems prob- 
able that, as in the case of the calculation of diffraction 
pattern intensities (Doyle, 1969), these components  
wil!, in general, be very small and can be neglected. 
Then (7) may be written as 

~b(r , t )=~bo(r , t )+~b,(r , t )+~b2(r , t )+. . .  (8) 

l ( r )  = [~o(r) * t(r)12+(l~,(r,  t) * t(r)[ 2) 

+([~2(r, t) * t(r)12)+ . . . .  (9) 

and 

It is customary to limit considerations of diffuse 
scattering in electron diffraction to the first two of 
these terms, i.e. to neglect double-diffuse scattering 
and higher-order terms. 

3. Single-slice formulation 

As the basis for consideration of the general 
expression (7) and in order to illustrate the nature of 
the effects to be expected, it is appropriate to consider 
the form of the (q,(r ,  t)) and Aq,(r, t) terms and the 
diffraction and imaging of a very thin crystal. The 

transmission function for a single slice of crystal is 

q(r, t) = exp [-itr~0(r, t)] 

=exp[ - i t r (~0( r ,  t ))]exp[-i trA~o(r,  t)], (10) 

where ~0(r, t) is the projection in the direction of the 
incident beam, the z axis, of  the potential distribution 
of the crystal: 

~0(r, t) = j" ~o(x, y, z, t) dz. (11) 

The interaction constant  tr is equal to 7r/hE and, by 
definition, 

(A~o(r, t)) = 0. (12) 

The terms in (6) are then 

(q(r,  t ) )=  exp [-kr(q~(r,  t))] 

x [ 1 - ½tr2(A~;o2(r, t)) + . . .  ] 

-=exp [-io'(~o(r, t ) ) -  p.(r)] 

where 

/x ( r ) =  ½o'2(A~;o2(r, t)) (13) 

and 

Aq(r, t ) = e x p  [ - k r ( ~ ( r ,  t ) ) ] [ - i t rA~(r ,  t) 

-½~2A~2(r, t ) + . . .  ] 

= (q(r,  t)){-io-A~p(r, t) 

-½tr2[A~p2(r, t ) --(A¢2(r ,  t ) ) ] + . . .  }. (14) 

Thus, to at least the second order in A¢(r ,  t), (q(r, t)) 
can be expressed as the transmission function of the 
t ime-averaged periodic structure with an added 
absorption function. In the diffraction patterns from 
thin crystals, the sharp Bragg reflections are given by 
Fourier t ransformation of (13). The time averaging, 
(¢(r ,  t)), introduces the Debye-Waller  factor for ther- 
mal motions and a corresponding factor for other 
inelastic processes. There is also a loss of energy 
represented by the absorption function /x(r). The 
deviation from the average transmission function, 
(14), is given by a modulat ion of the t ime-averaged 
transmission function by the t ime-dependent  devi- 
ation function. In the diffraction pattern, this term 
gives the diffuse scattering, which is similar to the 
kinematical diffuse scattering convoluted by the 
ampli tude distribution for the sharp Bragg reflections 
(Cowley & Fields, 1979). 

If a very thin crystal, equivalent to a single slice of 
a thicker crystal, is imaged, the observed image 
intensity is 

l ( r )  = ([q(r, t) * t(r)[ 2) 

= [(q(r, t)) * t(r)[ 2 + E ([Aq,.(r, t) * t,,(r)12). 
rr l  

(15) 
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It is customary to consider only the first term of 
(15), sometimes including the absorption function. 
The second term, arising from the imaging of the 
diffuse background of the diffraction pattern, is 
usually neglected. The second term will, in fact, tend 
to zero for poor resolution because Aq(r, t) is equally 
often positive and negative and the convolution with 
a sufficiently broad t(r) function will average Aq(r, t) 
to zero. On the other hand, for very high resolution, 
the second term will cancel out the effect of absorption 
in the first term and no absorption function should 
apply. In the limit that t(r) becomes a 8 function, i.e. 
for an ideally perfect microscope with no aberrations 
or defocus, the contrast is zero, as expected. For 
present-day high-resolution imaging conditions, the 
situation is intermediate between these two extreme 
cases. 

High-resolution images of crystals are usually 
obtained with the incident beam in an axial direction. 
Then, ideally, the projection ~o(r) contains non-over- 
lapping peaks due to individual rows of atoms, and 
the function A~o(r, t) occurring in (13) and (14) may 
usually be written 

Aq~(r, t)=~, e,(t)A~,(r-r,) (16) 
i 

where Aq~(r) is some time-independent function 
characteristic of the row of atoms and the time depen- 
dence comes in a multiplicative constant e~(t). If, in 
the high-resolution image, the individual atom rows 
are resolved, it may be assumed that the functions 
A¢~,~(r) * t,,(r) do not overlap, so that the last term 
of (15) becomes 

Y~ Y I{exp [-itr(~o(r, t))](-io-) 
m i 

x[e,m(t)A~Om,(r-r,)]} * t(r)l 2 . . . .  (17) 

In the WPOA, the first-order term is 

tr2~ E (e2,,,(t))lAq~,,,,(r-r,) * t,,,(r)l 2. (18) 
m i 

The next term is 

tr3E Y. (e,2(t))2 Re {[Aq~m,(r-r~ ) * t,,(r)] 
m i 

x [(q~(r, t))A~o,,,(r-r,) * t,,(r)]}. (19) 

The last bracket of this is dominated by whichever 
of the two functions, (~0(r, t)) or A~0m(r-ri), is the, 
narrower. In fact, from the full POA expression, (17), 
it is seen that if (~o(r, t)) varies more slowly than 
A¢,.i(r-r~),  the influence of the average projected 
potential will be small and the total contribution of 
the diffuse scattering to the image will be given to a 
reasonable approximation by (18). Thus the diffuse 
scattering by itself will produce an image of atomic 
resolution, provided that the chromatic aberration 
effects, introduced by the range of t,,(r) functions, 
are not too great. 

On the other hand, if the A~o,,~(r-ri) functions 
vary much more slowly than (~o(r, t)) and are essen- 
tially constant, equal to ~o,,~(r~ ) 6ver interatomic dis- 
tances, (17) will reduce to 

or2 ~ E (e~m(r))l Aq~m (r,)l 2 
m i 

× lexp [-itr(~o(r, t))] * t(r)l 2 (20) 

and the contribution of the diffuse scattering to the 
image will be proportional to that for the average 
structure. 

4. Thermal diffuse scattering 

For the time-dependent displacement, e~(t), 
individual atoms, 

so that 

~0(r, t )=  E ~oi[r-ri-ei(t)] 
i 

of 

&p(r, t)=Yei(t)grad cpi(r-r,). (21) 
i 

The thermal diffuse scattering in the diffraction pat- 
tern for a single atom would be 

(~(t)) u 21 ¢' (u) 12, 

but for an assembly of atoms this distribution is 
modulated by the effects of the correlations of atom 
movements (Cowley, 1981). The absorption function 
to be applied to the sharp Bragg reflection is 

/z(r) = ½or2 Y (e2(t))lgrad ~oi(r- ri)l 2. (22) 
i 

From (18), the WPOA contribution to the high-reso- 
lution image intensity, since t,,(r) = to(r), is 

tr2Y~(e~(t))lgrad~(r-r,)* t(r)l 2. (23) 
i 

Since grad~o (r) is antisymmetric, convolution with the 
symmetric function t(r) will reduce this contribution 
unless t(r) is a narrower function than ~oi(r). However, 
since grad q~(r) gives a narrower peak than (¢(r, t)) 
the thermal diffuse scattering will give a contribution 
to the image having better resolution (sharper atom 
images) than the elastic Bragg reflection image, in 
both the WPOA and the POA [following (20)]. 

5. Plasmons and single-electron excitations 

For the excitations of outer-shell or conduction-band 
electrons, the ground state for even the most loosely 
bound electrons is strongly modulated by the periodic 
atomic distribution. The excited state may be con- 
sidered as modulated by the periodic structure and 
also by a plasmon wave, exp (iq. r). Following Sturm 
(1982), we may write the fluctuation of the potential 
distribution as 

Aq~(r)=~,A~(h)exp[i(q+27rh).r]. (24) 
h 
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The time dependence enters through the frequency 
of the plasmon excitations. Averaging over time gives 
zero for the first-order terms and IA~(r)l  2 for the 
second-order terms, as before. For metals having con- 
duction electrons well separated in energy from the 
core electrons (such as A1) the magnitudes of the 
A~(h) for h # 0 may be small and decreasing rapidly 
with Ihl. For other crystals the values of the A@(h) 
may be larger, corresponding to the greater concentra- 
tion of the electrons around the atoms. The A¢,,~(r-- 
r~) distributions correspond to the outer shells of 
electrons around the atoms and so are less sharply 
peaked than the (~(r, t)). Because the A~..~(r-r~) 
distributions are centrosymmetrical, the convolution 
with t(r) in (18) will not reduce magnitudes as in the 
case of thermal motions. The contributions to the 
image in the WPOA have somewhat poorer resolution 
than for the elastic scattering in the absence of chro- 
matic aberration effects. The effects of chromatic 
aberration, represented by the summation over m in 
(18), provide the main limitation of resolution for 
current electron microscopes unless an energy filter 
with a narrow window is used. 

It may be noted that the argument leading to (18) 
does not imply crystallinity of the specimen so that, 
in the WPOA, the resolution of images of any samples 
by inelastically scattered electrons is limited almost 
entirely by the chromatic aberration effects. 

For the POA, when the higher-order terms domi- 
nate the contrast, the resolution of the images is the 
same as for the elastic scattering, degraded by the 
chromatic aberration effects. The presence of the 
exp [ - i t r (¢(r ,  t))] term in (17) and in (20) is con- 
sistent with the familiar concept that, except for very 
thin crystals, the imaging of inelastically scattered 
electrons is dominated by combined inelastic plus 
elastic scattering, which can give much the same 
image resolution as for elastic scattering only (Ajika, 
Hashimoto, Yamaguchi & Endoh, 1985). 

6. Approximations for the multi-slice formulation 

By substituting the expression for Aq(r, t) from (14) 
in the general multi-slice formula (9), with @(r, t) 
given by (7), it is possible, in principle, to calculate 
the contribution of the inelastic scattering to the image 
for the general many-beam transmission case. The 
first term of (9) represents a single multi-slice calcula- 
tion for N slices using the time-averaged potential 
function and the appropriate absorption function. 
The second term of (9), as in the diffraction pattern 
calculations (Doyle, 1969), involves N sets of multi- 
slice calculations; one for the single diffuse scattering 
taking place in each of the N slices. Each set of 
multi-slice calculations must be made for a number 
M of directions of diffuse scattering between the 
Bragg reflections sufficiently large to represent the 

continuously varying function in two dimensions in 
reciprocal space. If we take M as 100, for example, 
the number of N-slice calculations which must be 
made is 100N. For the third term of (9) the number 
of N-slice calculations to be made would be 100N 2. 
Thus for even the first approximation to the inelastic 
contribution it is scarcely feasible to follow this 
scheme, especially when it is realized that, for high- 
resolution images of moderately thick crystals (200/~ 
or more), N should be of the order of 100. 

The calculations problem can be greatly simplified 
for special, although commonly occurring, cases by 
using further approximations analogous to those used 
for the POA. For an incident beam in a principal 
axial direction of a reasonably close-packed structure, 
it is possible to make a column approximation which 
is valid for much greater thicknesses than for arbitrary 
orientations. Marks (1986) and Kirkland, Loane & 
Silcox (1987) have shown that a channelling 
phenomenon occurs which confines the electrons to 
single rows of atoms through the crystal. It has been 
confirmed by calculations for metal structures by 
Tanaka & Cowley (1987) that a column approxima- 
tion with a single line of atoms as a column may 
apply for thicknesses of the order of 200 A in the 
axial orientation whereas thicknesses of 50/~, would 
normally be considered excessive (see also Coene, 
Van Dyck, Van Tendeloo & Van Landuyt, 1985). 
Calculations made for metal structures containing 
defects (vacancies, substitute atoms) suggest that each 
column of atoms through the crystal may be con- 
sidered to be imaged separately. Then ~l(r, t) in (8) 
may be written as 

Y. )-'. (q~-~(r, t)){exp [- i t r (~, ( r ,  t))] 
m n i 

x [ - i t r e , , m ( t ) A ~ i , , , ( r - r , ) ]  * p,(r)}. (q"+'(r,N t)), 

(25) 

and, if the individual columns of atoms give well 
resolved peaks in the image, 

(IAO~(r, t) * t(r)l 2) 

= E E E ([[ $o(r)(-  io') e,,,,(t) 
m n i 

x A~, ,m(r- r  , )] • tm(r)12), (26) 

since it is a consequence of the column approximation 
that the position of an atom, or a displacement of an 
atom within the column, does not affect the result, 
so that each deviation Aq,(r, t) may be considered 
to occur at the exit face of the crystal. Then, if we 
consider all slices to be identical, 

(14'1(r, t) * t(r)l 2) 

= No'2 E E (e,2( t))l{ ¢o(r)A~,~(r-r ,  )} * tm(r)l 2. 
m i 

(27) 
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Thus, in the case of thermal motion, to calculate the 
first-order contribution of the TDS to the image the 
exit wave function is calculated for the time-averaged 
crystal; this wave function is multiplied by grad ~0,(r- 
r, ) for each projected atom position, the spread func- 
tion is applied, and the intensity is calculated. The 
image intensity contribution for each atom peak posi- 
tion is scaled according to the mean square displace- 
ment of the atoms, and is linearly proportional to the 
crystal thickness. 

The additional simplification of (18), applicable 
for a thin phase object, will not apply in this case 
because ]~bo(r)12 ~ 1. The TDS contribution, (27), will 
partly compensate for the loss of intensity in the image 
for the averaged structure arising from the presence 
of the absorption function. To the level of approxima- 
tion used, this compensation should be complete in 
the limit of very high resolution. Thus it appears 
possible that in practical calculations the scaling of 
the terms involved can be checked by calculating the 
total intensity, j l(r)  dr, at the exit face of the crystal. 

For electronic excitations, similar considerations 
apply, except that there may well be correlations in 
the A~oi,, for successive slices. Then, over the range 
of correlation, the amplitudes rather than the 
intensities are added so that for a correlation range 
of M slices, (27) will contain the factor N M  in place 
of N (Doyle, 1971). In the approximation that A~0,,,, 
varies more slowly than Oo(r), the contribution of 
(27) to the image is identical with that for the elastic 
scattering except for the chromatic aberration effects 
which may be best evaluated from a known chromatic 
aberration constant and a measured energy-loss 
spectrum. 

Concluding remarks 

The effects of inelastic scattering on high-resolution 
images of crystals may be taken into consideration 
by: (a) using the time-averaged potential distribution 
for the elastic scattering; (b) applying an absorption 
function to the elastic scattering calculation; and (c) 
adding the high-resolution image produced by the 
inelastically scattered electrons included in the objec- 
tive aperture, incorporating the chromatic aberration 
effects due to the spread of energies when appropriate. 
For thermal diffuse scattering, the time-averaged 
potential distribution is found by applying an 
appropriate Debye-Waller factor to the structure 
amplitudes used to calculate the potential distribu- 
tion. The absorption functions which are available 
for use (Doyle, 1970; Radi, 1970) have been calcu- 
lated on the basis that all thermal diffuse scattering 
is excluded from the image and the image is formed 
from the sharp Bragg elastic reflections only. For the 
present case of high-resolution imaging, some thermal 
diffuse scattering is included in the bright-field aper- 

ture and contributes to the image. In our formulation 
we have separated out the effect of the absorption 
function applied to the elastic imaging and the contri- 
bution of the diffuse scattering to the image, which 
takes the form of a high-resolution image with atomic 
peaks which are sharper than those for the elastic 
scattering. The limitation of this contribution from 
the diffuse scattering by the objective aperture is 
included through the application of the transfer 
function of the objective lens in the imaging 
process. 

The contribution of the thermal diffuse scattering 
to the image cancels out, to some extent, the effect 
of the absorption function. For an ideally perfect 
microscope, with t(r) -- 8(r), this cancellation would 
be complete. An estimate of the extent of this calcula- 
tion in practice may be obtained by estimating the 
fraction of the thermal diffuse scattering intensity 
which passes through the objective aperture. Calcula- 
tions of this sort, made for Si and Pb crystals at room 
temperature for a 400 keV microscope having a reso- 
lution of about 1.6 A, suggest that a fraction of 10 to 
20% of the diffuse scattering will be included in the 
aperture for very thin crystals. The fraction will 
increase for improved resolution, thicker crystals and 
higher temperatures. 

In most multi-slice calculations now made, the 
absorption functions are not included. Calculations 
made by Pirouz (1979) suggest that for the case of a 
Cu3Au alloy with 100 keV electrons and a resolution 
of approximately 3 A, the effects of the absorption 
function produce gross modifications of the relative 
heights or positions of the intensity maxima in the 
image for thicknesses exceeding 200 A. For improved 
resolutions, the effects should be greater for a given 
thickness and modifications should become apparent 
for smaller thicknesses, especially if quantitative 
interpretation of image intensities is attempted. 

To a first rough approximation, the contribution 
of the thermal diffuse scattering to the image may be 
taken into account by reducing the magnitude of the 
absorption function by an appropriate small factor. 

For the inelastic scattering by excitation of the 
crysta! electrons, the modification of the potential 
distribution by time averaging is not normally con- 
sidered. The absorption functions are usually con- 
sidered to have no non-zero Fourier coefficients, at 
least for plasmon excitations; however, for the 
quantitative assessment of elastic images a reassess- 
ment of this assumption is clearly necessary in order 
that the known periodic modulations of the initial 
and final states should be taken into consideration, 
especially for materials other than ideal metals 
(Sturm, 1982). 

In the absence of chromatic aberration effects, the 
contributions of the diffuse scattering to the image in 
these cases would very largely compensate for the 
effects of the absorption function, since most of the 
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diffuse scattering is included within the objective 
aperture. However, the loss of resolution due to chro- 
matic aberration effects is of importance for most 
present-day high-resolution electron microscopy, so 
that for quantitative image interpretation, the elastic 
and inelastic images should be calculated separately 
with appropriate absorption functions. 

It may be noted that, for the conditions of high- 
resolution imaging which we have discussed, the 
image intensities are not affected by the correlations 
of the perturbations of the potential in neighboring 
atoms. The non-localization of the excitation of the 
crystal in an inelastic scattering process can influence 
the elastic scattering only through such correlation 
effects. The effects of the non-localization can thus 
appear in the diffraction patterns but do not affect 
the high-resolution images. 

This work was supported by NSF grant 
DMR 8510059. 
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Abstract 

The secondary electron emission, the Auger electron 
emission and the elastically reflected intensity have 
been measured simultaneously in a reflection high- 
energy electron diffraction (RHEED) beam rocking 
experiment with Pt(111). Secondary and Auger yield 
depend similarly on incident angle. In particular, both 
quantities exhibit maxima at primary beam orienta- 
tions around the resonance maxima of the specular 
beam intensity. The corresponding primary wave field 
arising by diffraction in the crystal has been calculated 
using the dynamical theory of RHEED. It turns out 
that, in contrast to previous suppositions, at the reson- 
ances there is a minimum of primary electron density 
at the atomic sites. It is shown that the behaviour of 
both yields is rather a consequence of total primary 
electron intensity near the surface, which is enhanced 
at the resonances. 

1. Introduction 
Owing to inelastic interactions a fast electron beam 
inpinging on a solid can produce different kinds of 
secondary radiation such as X-rays and Auger elec- 
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trons (AE) or secondary electrons (SE). These proces- 
ses are widely used for analysis of small samples, for 
instance, in the scanning electron microscope. 

Owing to diffraction effects of the electron beam 
in crystals its spatial density distribution is modulated 
on an atomic scale. The probability of localized 
inelastic interactions therefore depends on the diffrac- 
tion conditions fulfilled by the incident beam. On the 
one hand, this leads to anomalous transmission effects 
in thin crystals (Honjo & Mihama, 1954; Altenhein 
& Moli~re, 1954), which are also well known from 
X-ray transmission (Borrmann, 1941). On the other 
hand, an influence of the diffraction condition on the 
yield of characteristic X-ray emission has been 
observed for thin metal crystals (Duncumb, 1962; 
Hall, 1966), as well as for solid samples of ZnS 
(Miyake, Hayakawa & Miida, 1968). Theoretical 
interpretations on the basis of the dynamical theory 
have been given by Hirsch, Howie & Whelan (1962) 
for the transmission case and by Miyake, Hayakawa 
& Miida (1968) for the case of reflection. Similarly, 
the effect of Bragg diffraction of the incident beam 
on Auger yields of solid samples has been observed 
(e.g. Morin, 1985). 

© 1988 International Union of Crystallography 


